363 research outputs found

    A Cluster Monte Carlo Algorithm for 2-Dimensional Spin Glasses

    Full text link
    A new Monte Carlo algorithm for 2-dimensional spin glasses is presented. The use of clusters makes possible global updates and leads to a gain in speed of several orders of magnitude. As an example, we study the 2-dimensional +/-J Edwards-Anderson model. The new algorithm allows us to equilibrate systems of size 100^2 down to temperature T = 0.1. Our main result is that the correlation length diverges as an exponential and not as a power law as T -> Tc = 0.Comment: 6 pages, 9 figures, section 2 completly rewritte

    The wormhole move: A new algorithm for polymer simulations

    Full text link
    A new Monte Carlo move for polymer simulations is presented. The ``wormhole'' move is build out of reptation steps and allows a polymer to reptate through a hole in space; it is able to completely displace a polymer in time N^2 (with N the polymer length) even at high density. This move can be used in a similar way to configurational bias, in particular it allows grand canonical moves, it is applicable to copolymers and can be extended to branched polymers. The main advantage is speed since it is exponentially faster in N than configurational bias, but is also easier to program.Comment: 8 pages, 6 figure

    Reply to Comment on "Ising Spin Glasses in a Magnetic Field"

    Full text link
    The problem of the survival of a spin glass phase in the presence of a field has been a challenging one for a long time. To date, all attempts using equilibrium Monte Carlo methods have been unconclusive. In their comment to our paper, Marinari, Parisi and Zuliani use out-of-equilibrium measurements to test for an Almeida-Thouless line. In our view such a dynamic approach is not based on very solid foundations in finite dimensional systems and so cannot be as compelling as equilibrium approaches. Nevertheless, the results of those authors suggests that there is a critical field near B=0.4 at zero temperature. In view of this quite small value (compared to the mean field value), we have reanalyzed our data. We find that if finite size scaling is to distinguish between that small field and a zero field, we would need to go to lattice sizes of about 20x20x20.Comment: reply to comment cond-mat/9812401 on ref. cond-mat/981141

    A geometrical picture for finite dimensional spin glasses

    Full text link
    A controversial issue in spin glass theory is whether mean field correctly describes 3-dimensional spin glasses. If it does, how can replica symmetry breaking arise in terms of spin clusters in Euclidean space? Here we argue that there exist system-size low energy excitations that are sponge-like, generating multiple valleys separated by diverging energy barriers. The droplet model should be valid for length scales smaller than the size of the system (theta > 0), but nevertheless there can be system-size excitations of constant energy without destroying the spin glass phase. The picture we propose then combines droplet-like behavior at finite length scales with a potentially mean field behavior at the system-size scale.Comment: 7 pages; modified references, clarifications; to appear in EP

    Low-temperature behavior of two-dimensional Gaussian Ising spin glasses

    Full text link
    We perform Monte Carlo simulations of large two-dimensional Gaussian Ising spin glasses down to very low temperatures β=1/T=50\beta=1/T=50. Equilibration is ensured by using a cluster algorithm including Monte Carlo moves consisting of flipping fundamental excitations. We study the thermodynamic behavior using the Binder cumulant, the spin-glass susceptibility, the distribution of overlaps, the overlap with the ground state and the specific heat. We confirm that Tc=0T_c=0. All results are compatible with an algebraic divergence of the correlation length with an exponent ν\nu. We find −1/ν=−0.295(30)-1/\nu=-0.295(30), which is compatible with the value for the domain-wall and droplet exponent θ≈−0.29\theta\approx-0.29 found previously in ground-state studies. Hence the thermodynamic behavior of this model seems to be governed by one single exponent.Comment: 7 pages, 11 figure

    Dipolar SLEs

    Full text link
    We present basic properties of Dipolar SLEs, a new version of stochastic Loewner evolutions (SLE) in which the critical interfaces end randomly on an interval of the boundary of a planar domain. We present a general argument explaining why correlation functions of models of statistical mechanics are expected to be martingales and we give a relation between dipolar SLEs and CFTs. We compute SLE excursion and/or visiting probabilities, including the probability for a point to be on the left/right of the SLE trace or that to be inside the SLE hull. These functions, which turn out to be harmonic, have a simple CFT interpretation. We also present numerical simulations of the ferromagnetic Ising interface that confirm both the probabilistic approach and the CFT mapping.Comment: 22 pages, 4 figure

    Large-scale low-energy excitations in 3-d spin glasses

    Full text link
    We numerically extract large-scale excitations above the ground state in the 3-dimensional Edwards-Anderson spin glass with Gaussian couplings. We find that associated energies are O(1), in agreement with the mean field picture. Of further interest are the position-space properties of these excitations. First, our study of their topological properties show that the majority of the large-scale excitations are sponge-like. Second, when probing their geometrical properties, we find that the excitations coarsen when the system size is increased. We conclude that either finite size effects are very large even when the spin overlap q is close to zero, or the mean field picture of homogeneous excitations has to be modified.Comment: 11 pages, typos corrected, added reference

    Zero-temperature responses of a 3D spin glass in a field

    Full text link
    We probe the energy landscape of the 3D Edwards-Anderson spin glass in a magnetic field to test for a spin glass ordering. We find that the spin glass susceptibility is anomalously large on the lattice sizes we can reach. Our data suggest that a transition from the spin glass to the paramagnetic phase takes place at B_c=0.65, though the possibility B_c=0 cannot be excluded. We also discuss the question of the nature of the putative frozen phase.Comment: RevTex, 4 pages, 4 figures, clarifications and added reference

    Comparing Mean Field and Euclidean Matching Problems

    Full text link
    Combinatorial optimization is a fertile testing ground for statistical physics methods developed in the context of disordered systems, allowing one to confront theoretical mean field predictions with actual properties of finite dimensional systems. Our focus here is on minimum matching problems, because they are computationally tractable while both frustrated and disordered. We first study a mean field model taking the link lengths between points to be independent random variables. For this model we find perfect agreement with the results of a replica calculation. Then we study the case where the points to be matched are placed at random in a d-dimensional Euclidean space. Using the mean field model as an approximation to the Euclidean case, we show numerically that the mean field predictions are very accurate even at low dimension, and that the error due to the approximation is O(1/d^2). Furthermore, it is possible to improve upon this approximation by including the effects of Euclidean correlations among k link lengths. Using k=3 (3-link correlations such as the triangle inequality), the resulting errors in the energy density are already less than 0.5% at d>=2. However, we argue that the Euclidean model's 1/d series expansion is beyond all orders in k of the expansion in k-link correlations.Comment: 11 pages, 1 figur

    Spin and link overlaps in 3-dimensional spin glasses

    Full text link
    Excitations of three-dimensional spin glasses are computed numerically. We find that one can flip a finite fraction of an LxLxL lattice with an O(1) energy cost, confirming the mean field picture of a non-trivial spin overlap distribution P(q). These low energy excitations are not domain-wall-like, rather they are topologically non-trivial and they reach out to the boundaries of the lattice. Their surface to volume ratios decrease as L increases and may asymptotically go to zero. If so, link and window overlaps between the ground state and these excited states become ``trivial''.Comment: Extra fits comparing TNT to mean field, summarized in a tabl
    • …
    corecore